嫦娥六号“地月巴士”护送月球样品回地球,“太空接力”如何完成的?
6月6日14时48分,嫦娥六号上升器成功与轨道器和返回器组合体完成月球轨道的交会对接,并于15时24分将月球样品容器安全转移至返回器中。这是继嫦娥五号之后,我国航天器第二次实现月球轨道交会对接。
嫦娥六号上升器与轨道器和返回器组合体完成月球轨道交会对接示意图。中国航天科技集团 供图
嫦娥六号上升器自6月4日上午从月球背面起飞进入环月飞行轨道后,先后进行了4次轨道调整,上升器于轨道器和返回器组合体前方约50公里、上方约10公里位置时,轨道器和返回器组合体通过近程自主控制逐步靠近上升器,完成轨道交会。轨道器配置的3套K形抱爪对准上升器连接面的3根连杆,通过将抱爪收紧实现两器紧密连接,精准完成交会对接。此后,装载着珍贵月球背面样品的容器从上升器被安全转移至返回器中。
后续,嫦娥六号轨道器和返回器组合体将与上升器分离,进入环月等待阶段,准备择机实施月地转移轨道控制,经历月地转移、轨道器和返回器分离等关键步骤后,按计划返回器将携带月球样品着陆在内蒙古四子王旗航天着陆场。
澎湃新闻(www.thepaper.cn)从中国航天科技集团八院获悉,2024年5月3日,嫦娥六号探测器从文昌航天发射场发射升空,踏上月背征途。在远赴月球的旅程中,嫦娥六号探测器的四器(即着陆器、上升器、轨道器、返回器)分别承担了不同的飞行任务。其中,上海航天抓总的轨道器作为贯穿任务全过程的核心产品之一,承担着地月往返运输的重要使命,它在相距38万公里的地月之间完成月球样品的“空中接力”,是名副其实的“地月巴士”。
继嫦娥五号成功实现我国首次地外天体采样返回后,嫦娥六号轨道器如今再次“发车”,这一次,它将从38万公里外为我们带回月背的“礼物”。
轨道器大展“分身术”
发射升空后,轨道器的首要任务就是运输,它不仅需要具备强大的承载能力,承载各器进入月球轨道,护送月背采样,还要在月球轨道进行交会对接与样品转移,稳妥地完成月壤样品的“接收”“装箱”,并安全“投递”回蓝色星球。
飞行阶段多、器间状态多,轨道器必须携带足够的推进剂以及大量载荷,才能确保此程的安全无虞,但受到探测器整器重量的约束,轨道器不得不解决高承载与轻量化的矛盾。除了创新大承载复杂构型轻量化结构等关键技术外,嫦娥六号轨道器采用多次分离复杂构型,通过在太空中完成“分离-组合-再分离-再组合”的变形过程,灵活机动、身轻如燕实现地月往返运输任务。
嫦娥六号着陆器和上升器合影。中国航天科技集团 供图
八院介绍,在整个任务过程中,轨道器共实施6次分离,呈现出6种组合体状态,参与了地月往返运输、器间分离、交会对接与样品转移等关键任务,是目前最复杂的空间飞行器之一。
而在与各器的多次对接分离过程中,连接稳固、分离可靠的连接解锁与分离关键技术,成就了嫦娥六号的从容飞天之旅。
在长征五号火箭将嫦娥六号成功运送至预定轨道后,轨道器迎来了奔月征途中的第一次分离,也就是与运载火箭的箭器分离,分离后,由它承载着各器独自奔向月球轨道。5月8日,嫦娥六号顺利完成第一次近月制动,并成功分离国际载荷巴基斯坦立方星。
接着,在经过了两次轨道中途修正、两脚“太空刹车”后,嫦娥六号顺利进入环月轨道,成功分离着陆器与上升器组合体,静待它们着陆月背、开展采样工作。
期间,为了减轻重量、节省推进剂的消耗,轨道器还成功分离了器间支撑舱。6月4日,上升器从月面起飞上升,轨道器与上升器成功交会对接并完成月球样品的转移,并随即将上升器分离,携带着装有月壤样品的返回器踏上回家之旅,通过分离返回舱,将月壤安全送回地球。
精准可靠完成“太空接力”
将上升器中装有月球样品的容器,转移到轨道器中的返回舱内,是嫦娥六号此次月背采样返回任务的关键环节。
完成采样后,上升器从月面起飞,在进入环月轨道后与轨道器相遇。此时,如果采用载人航天工程中的弱撞击式对接,那么仅有轨道器1/5重量的上升器会面临被撞飞的风险。因此,嫦娥六号轨道器采用捕获式对接,通过抱爪式对接机构,配合采用连杆棘爪式转移机构,确保月球样品容器的可靠转移。
八院专家介绍,所谓的抱爪式对接,形象地说就像我们手握棍子的动作。轨道器上配置了3套K形抱爪,只要对准上升器连接面上的3根连杆,通过将抱爪收紧,就可以实现两器的紧密连接。而连杆棘爪式转移机构的设计则更为巧妙,倒三角形的棘爪构型像是我们经常使用的尼龙扎带,齿纹对准后只能进行单方向运动。通过连杆机构的4次伸缩、棘爪机构的可靠抓取,样品容器得以逐渐移动到返回器中。
由于月球轨道相对地球轨道有时延,时间走廊较小,因此,对于在轨高速运动的轨道器和上升器来说,捕获的机会转瞬即逝。21秒,是交会对接任务的极限挑战:1秒捕获,10秒校正,10秒锁紧。38万公里之外,机构动作一气呵成,实现了两器之间“抓得住,抱得紧,转得稳”,为嫦娥六号实施首次月背采样返回任务奠定了坚实基础。
随便看看:
- [科学探索]古代美人鱼传说,盘点美人鱼存在的证据
- [科学探索]异性效应是什么?揭秘男女搭配干活不累的心理学原理
- [科学探索]2023超级血月时间揭秘 错过这次需要等待十几年
- [科学探索]梦幻闪蝶相关资料 梦幻闪蝶的图片揭秘
- [科学探索]甘比诺家族首任教父:卡洛·甘比诺,活了74岁得以善终
- [科学探索]86版西游记十大美女 各个都是绝世佳人魅力超群
- [科学探索]人生有没有轮回转世?轮回转世真实存在的十大证据(谣言)
- [科学探索]爱因斯坦大脑开发多少:13%,被切成约200片,研究43年
- [科学探索]巴格斯·西格尔为何而死?揭秘拉斯维加斯缔造者被杀之谜(情杀)
- [科学探索]十九岁男孩发明双枪老太婆专用美式手枪 手枪中的劳斯莱斯
相关推荐:
- [科学探索]2025上海居转户最新政策发布!
- [科学探索]金星曾经和地球相似,为何如今却成了炼狱般的世界?
- [科学探索]一核多点,北京科幻产业布局逐渐形成
- [科学探索]《中国空间站科学研究与应用进展报告》发布——晒晒中国空间站的
- [科学探索]2025科学跨年之夜 前来报到啦!
- [科学探索]中国太空科技崛起,美国为何在太空领域显落后?风洞技术成关键
- [科学探索]2024国内十大科技新闻 四川这个“大国重器”的发现入选
- [科学探索]聚焦“中国天眼”等大科学装置 科学纪录片《打开宇宙之门》即将
- [科学探索]腾讯再战,网易豪赌!盘点2024年12月版号里值得关注的游戏
- [科学探索]2024中国向“新”而行
网友评论:
推荐使用友言、多说、畅言(需备案后使用)等社会化评论插件